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ABSTRACT

An analysis has been made of the compressional wave spectrum
excited in a fissioning uranium plasma confined in a cavity such as a
gas cored nuclear reactor. Computer results are presented that soive
the fluid equations for this problem including the effects of spatial
gradients, nonlinearities, and neutron density gradients in the reactor.
Typically the asymptotic fluctuation level fdr the plasma pressure is

of order 1%.
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1. INTRODUCTION

The abjective of this study has been to analyze the role of
spatial gradients on the nonlinear development of fission power density
driven instabilities in uranium plasmas. The principal impetus for

study of such uranium plasma reactors has derived from the concept of a

(1-5)

high specific impulse nuclear gas-cored rocket engine. However,

fissioning plasma reactors may also lead to develcpment of a new class

(6-10) , and perhaps may even have

(11)

of magnetohydrodynamic generators

application to the direct nuclear excitation of lasers.

The equations describing a uranium plasma involve the coupling
of the plasma "fluid" dynamics to the neutron transport and also to the:
radiation transport in the systequ) . In such a reactor, the plasma
would be enclosed (or nearly enclosed) by a neutron mderatbr — vwhich
is important in that it returns the thermalized neutrons back to the
plasma core — while radiation transport daminates the transport of
energy within the plasma. The system of equatiéns used in this analysis

is set out in the next section.

The major application for the fissioning uranlmn plasma reactor
(on which significant effort has been expended) is that of the gaé—cored
nuclear rocket engine shown below. In general, this system consists
of a chamber in which a fissioning uranium plasma (at ~5 + 10*°K) is
maintained in the central region and radiatively heats the propellant
hydrogen gas which flows around the main core and is subsequently ejected
from the rocket nozzle. The chanber is surrounded by a moderator Wh_'LCh

slows down the fission neutrons and returns them to tlhe uranium core.

/
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Figure 1.1

It is clear that if instabilities occur in this deﬁce, leading
to elther a fine-scale plasma turbulence or larger scale oscillations,
they could well have undesirable results — such as enhanciné the uranium
fuel ejection from the rocket. An understanding of these processes (and
their possible controllability) is of basic importance for the feasibility

of constructing such plasma~cored rocket engines.

In a more general context, it should also be noted that» the
direct excitation of plasma motion and plasma waves by a fissioning plasma
reactor may have useful applications to other energy conversion devices

such as MHD generators.

One source of instability is the growth of sound waves (12) in

the plasma due to the fission power density, P fiss® The instability
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" mechanism involved can be understood as follows: Consider a standing sound
wave in a bounded region of fissioning plasma with a constant background
thermal neutron density. In the wave compreséions the fission power den—
sity, P , increases due to the increased uranium density, and in the
rarefactions P fiss decreases. This results in an increased pressure grad-
ient associated with the wa\;e vhich in turn leads to a transfer of fission

fiss

power to the wave. It occurs because the wave compression tends to expand
more rapidly than it was compressed. However, competing with this is the
fact that radiation tends to transport the extra thermal energy out of the
wave compressions. Radiation diffusion smooths ocut the temperature fiuctu—
ations of waves more rapidly the shorter their wavelength. This results in
a critical wavelength, kc:ri £ below which waves are stable éhd above whlch

they are unstable.

Last year we calculated the nonlinear -evolution of such unstable
waves to determine their limiting amplitude. The mechanism that finally
limits their amplitude is the mode coupling of unstable waves in the wave-
length range A > }‘crit to radiation damped waves in the range A < )‘crit'
However in order to keep the equations tractable it was assumed that the
uranium plasma was spatially homogeneous, and that only one mode was

unstable. _ r .

The work reported here relaxes these assumptions and deals with
the full system of equatiens includjng the physical effects of nonuniform
plasma density, temperature, neutron density, and radiation flux, oﬁ acoustic
instabilities in the reactor. The temperature dependence of the ‘Ross.‘,eland

diffusion coefficient and internal ionization energy storage in the plasma



was also included.

The system of fluid equations describing a U-plasma heated
by fission and losing energy by radiation diffusion is given by Egs.
(2.1)-(2.3) in the next section. Our proced‘m;e is to first choose a
stationary solution to these equations corresponding to a given steady-
state reactor. Then., a computer solution is obtained which follows the

evolution of a perturbation in the plasma.

Our general conclusion is that for tyf)ical parameters (of
interest for gas core rocket engines), the pressure fluctuation level
due to fission-driven acoustic instabilities is of order 1%. The fact
that this is considerably larger than that calculated last year can be
assigned to the capability of the computer model to include the effects
of spatial inhomogeneities for a reactor in wiruch several modes are also
unstable. These complex situations could noﬁ be treated by analytic

methods.

The above fluctuation level should not present a severe problem
for open cycle reactors. Further, under some conditions (see section 5),
the partial transmission of sound waves out of the reactor cavity would
have an important stabilizing effect which could suppress the fluctuations
to below the 1% level. In an open cycle reactor, acoustic compression
waves can propagate out of the cavity along the gas column ejected through -
the rocket nozzle (and a small amount of transmission can also occur
through the walls). This competes with the fission power density effect

that tends to energize such waves.



2.

FLUID EQUATIONS FOR URANIUM PLASMA

It is useful for computational purposes to write the system

of fluid equations for a U-plasma in conservation law form. We start

with 12,
SNu
ety Oy) =0
3\_7u 1 .

3
2

d 5
(—+v . z) [——NuKTu (1 + 2) +Nu€]+—2— (1+2) NRLV «

vwhere the fission power density, P

and

+Nu€Z..Yu = Pfiss-*-y-'[KRZTu:l *

fiss’ is given by

Pfiss = Ny Nn Vo 0 Q

N, = nunber density of U atoms and ions

Vu = radial fluid wvelocity

Z = mean charge on U atoms or ions in units of e
M = mass of U-atom

Tu = U-plasma temperature

Nn = neutron mmber density

Yo = neutron thermal speed

—5-

(2.1)

(2.2)

(2.3)



Q = energy pexr fission event

0 = induced fission cross-section

KR = radiation diffusion coef. (= a thermal conductivity)
€

= average energy used to ionize the U atoms to their
average charge state Z

(12-16)

The quantities € and Z are shown as functions of T and pressure

in figures 2.1 and 2.2.

The last two equations can be re-written

3 ~
E—.(MNHV)+Z [MMVvVv +INKL (L+2)] = O (2.4)
) 1 2 . 3
E{jmuvu+2_mumu(1+z)+1\1u€ , '
+V . VlM\Iv2+§VNKr(1+z)+NV€— VT =P (2.5)
- -2 uu 2-uu u u— KR—-u fiss’ *

thereby expressing their local conservation-law form.

Considering for example the motion of a plasma confined to

a slab of thickness L with rigid walls, {.e.,

Vu(x =0,L) = 0O ,

the instantancous heat flux out of the reactor is

oT
u

Prot = ~ XK (W

) ergs/sec/can’ .
x=0,L
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This is a radiation flux and is assumed to be carried off at the outer
wall by for example a flow of cooler absorbing fluid. We will be inter-
ested in an initial value problem in which the system starts at t =0
with small perturbation about a steady state solufion. A spectrum of
waves is then expected to be generated which reaches a steady—spectxum.

state.

Equations in Dimensionless Form

The following dimensionless variables are useful:

X
X =5
(2.6)
T = t/(L/VO)
vhere L is a length in the system (e.g., sphere radius or slab thick-
ness), and
L L
KT (1+2)}° P\
..... o o
VO= =(-—.
M Po
vhere PO, Por To’ Zo’ No' are all evaluated at the central point in
the system. Thus we define
MN
T
o
< T = (2.7)




Further, define

(g = L1+2
- 1+ 2
O
< ‘ ’
(2.8)
&
Le = .
KI‘Ol+ZO)

In terms of these variables the system becomes

p v
9 2 _
-21- pV2+-3—pT6+pe % V2V+%VpT6+pV€— o g_?'_
- - T p VL X
oo
0 .
= 0 . (2.9)
) 3
L Pfiss/povo .

The dependence of the radiation diffusion coefficient and fission power

density on T, N is given below.

Radiation Diffusion 'Coefficient(12_16)

The radiation diffusion coefficient is given by

K, = %6— B (2.10)

where ¢ is the black body constant and kR the Rosseland mean opacity

in cm .

~10-



Now there is same uncertainty concerning the Ty and pressure
dependence of kR. Some theoretical values are shown below, which accord-
ing to Patch are expected to be correct to within an order of magnitude.
Typically we shall be interested in the temperature range from 50,000
°K (reactor core) to 5000 °K (reactor edge) . ‘In this range we see that
kp goes through a maximum. In view of uncertainties in the value of
kR, and the fact that the T°® dependence in (2.10) is stronger than the
j<RCP) dependence, we shall simply assume kp to be constant in the follow-

ing calculations. It would not be difficult to relax this assumption.

0% ¢

U-opacity : .
ol

10 L

Pressure Atm.

ol N

500
10! | \\\\\
\ 100
2 6 10 20 60 100 x 10% °k

" Figure 2.3
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The quantity occurring in the dimensionless equation (2.9)

involving radiation diffusion has a coefficient

KR To 16 cyB Tg ( To ) 3 = 3
= T = T
3 3 3 KR
pOVOL kR p ovoL .
where we have defined a dimensionless diffusion coefficient ~KR

This can also be written

I?R-—-Km(% ) e

Lo V3 VONOK(l + Z)L
oo
where KRo is KR evaluated at the reference point %, where Tu =
N =N_.
u o

Fission Power Density

The dimensionless quantity involving fission in (2.9) is

L S L ~
( v ) Priss = ( o v ) 1\]uNnVoOQ :
Po¥o PoVo

For the neutron density in the cavity we allow a space dependence and

write
N = 1N, 9

n

where g(XO) = 1 evaluated at the reference point x o+ Thus,

-12-
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(2.11)

(2.12) .



L = P B
- | Priss ° Priss P 9K (2.13)
06V6

vhere the dimensionless fission power is

5 _ I . VOOQRnn ’
fiss 3  fiss,o (2.14)
OVO K[‘O(l + ZO)VO

and

Pfiss 0 NonnvoOQ . (2.15)
is the fission power at the central point X where N, = NO and
Tu = TO .
Equatioris for Slab or Sphere

In summary then, equation (2.9) can be written as

P v
L oV t o PV ¥ + I P19

%pv2 +—§-pTe+ pe —2]1 Vz\_7+§2-y_pT6+p\_7€ —R—RTQ%TT{-
0
= 0 . : (2.16)
Pfiss pg )

This equation is simplest to integrate for one-dimensional gearetries

~-13~



such as slabs, spheres, or cylinde.rs. It becomes complicated for two
dimensions, and only a few 3-D fluid codes have been written to date and
invariably consume large quantities of machine time or the use of extremely

coarse grids. Two one-dimensional cases of interest to us are:

Slab
P pv
_g_ pv + %_ pV? + pTH
T X
1243 145 _gops T
> Ve + 5 pTo + pe 5 pve + 5 VpT8 + pVe KRT %
(2.16a)
0]
= 0] .
Pfiss; P9
‘Sphere
R%p _ R%pv
_3_ : + N '
oT oV ot | - | pVZ + pTO
2 !‘. 2 .:i 1 . 2 _:_I-__ 3 §_ = 3 9T
R[2V+2pT6+pe] R[Z V+2VpT6+pV€—KRT—a-§
(2.16Db)
6]
= O .
R2P _,
fiss .p_ d



It should be noted that the quantities Z and €are also
functions of T and P. They occur in (2.16) in the dimensionless

variables

|
+
N

6 = , € = & . (2.17)

ft
+
N

Now the temperature dependence of %, £ is more rapid than their pressure
dependenoe; Also, the reactor plasma will have a pressure which is
nearly constant as a function of position (except for fluctuations
associated with wave motion), whereas the plasma temperature varies

by an order of magnitude from the center of the reactor edge. Thus it

is reasonable to set

z(r, P) = Z(T, Po)
(2.18)

£r, P) = (T, B)

in the fluid equatiohs, i.e., only account for the temperature depend-

ence of 2, €in the time~dependent problem.

This has been done by making a linear fit of the UPLAZ-2

camputer calculations (4) for these functions, i.e.,

1

[m
i

a+bT a+bT T
u o)

(2.19)
€

il
i

c+dTu c+dTOT .

The coefficients a, b, ¢, d are functions of pressure evaluated at the

approximately constant reactor pressure.

-15-



3. STATTIONARY SOLUTIONS

From equation (2.16) we see that the stationary solutions in-

volve solving

pTeO = 1
and
= 3 3 OT - '
Ry 5% (T 5§> + Pgyo pgX) = 0 (slab)
or
= _9 32 OT 5 2 _
KR R (TR BR) + Pfiss pg(R)R° = 0 (sphere)
Using (3.1), these becamne
0 30T . o ),
(1 + 2)T % <T % ) +EgX) = 0 (slab)
(1L + z)T o (el ) 4 ER%g(R) =' 0 © (sphere)
oR oR ?
where
Pfiss(l + Zo)
£ =
i.e.,
2 2
3(—3%—)+T8T+ £Eg = 0  (slab)
ax? (1 + 2)T3
2 2 .
3 (%%ﬁ) + T-§42-+ %2- %gf &g : =0 (sphere)
9R* (L+2) 18

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)



Now writing the grid spacing as h, it follows that

oT

% n Ty~ Ty
atj
iy ~ A (.- 2T + T, ) (3.8)
82 hz  Jt1 J J-1
3
(Q.T_')z e L (o2 ~op. P+ T2 )
3% me |l J+L 91 T -1 -
Thus (3.6) or (3.7) give a quadratic in Tj+1 :
2 —
ATS,  +BTy +C = 0
i (3.9)
_ 1 _ 2 _ A
ey -k (5 0o 00t
- where
.
= 3
A =7
slab {1 B = —%Tj_l (3.10)
| ¢ = 272, - o212 4+, + Ehfg(X = jh)
4771 30739 a1+ g T
_ 3
[ A =7
3 hT,
Sphere 4 B = Tj - E'Tj—l 5 (3.11)°
3
L ¢ = %T?_l—ZT?+T;T._l—%—T.T._l+Lh2g(R:~])
] j 3 TJ?(1+ a+b'I‘oTj)

-17-



where we have_noted equation (2.19) for Z .
Sane sample curves are shown in Figs. 3.1 to 3.4 for a slab of
thickness L (L is taken as the reference length in Eq. 2.6). The refer-

ence pomt where N, = No P T, =T, is taken as the center, i.e., x = L/2,

X = .5, and the neutron density function g was taken to be

L, 2

a(x "'2-),

g = e oL2 (X - .5)

e .

The constants used in Figs. 3.1 - 3.4 are:

r a = - o4375
for Z=a+bT T
b = 9.37 - 10~° ©
% = 4.247
(@}
T = 5.10% °K
dl?2 =2 o0r 0 (Scale for neutron density) (3.12)
1 N = 1.5 10'°
5 .
kp = 1.2 102 an™?
¢ =-3.17 - 10711
L5 for8=c+dTOT
e =2.64 - 10~ '

Various values of & which determines P

-

fiss,o

LK =3.2 - 10® enysec/deg.

~18-
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4. TIME-DEPENDENT PROBLEM

The program that integrates (2.16a) makes use of the Lax Wendrof

two step method. Edquation (2.16a) has the form

3 9 _ ’

3T u + —S'—F = _D_ . (4.1)
Step 1:

Compute provisional values at centers of rectangular meshes of

the net in the x - T plane using

+% AT At , n n, ‘
9131+1v = g§;+1 U? 28x F;‘+1 th}) T Ryt D) - (42
SteE : .

Then advance in time using

Un+l - P At Fn+lf _ Fn+ _I. (Dj 1 ). (4.3,

=J =] & Gy oy ) Y3
The walls are treated as rigid so that the fluid flux eV

vanishes there. However, the energy flux is a floating quantity at the

wall, i.e., it is continuous across the boundary. A spatial Fourier

analysis is also made of the various fluid variables,

A = ¥ (A sink x+ B cos k %)

n n n n
L - ™ (4.4)
n L

-23~



Interpretation of Fourier Mode Behavior and
Camments on Turbulence Equations

When the stationary system described in Section 3 is perturbed,
a spectrum of sound waves is generated. This spec’énm settles down into

an asymptotic finite amplitude spectrum after about 50 sound transit times

across the reactor. It derives its energy frcml the fission power driven
instability described earlier. (12)
Now the presence of such a wave spectrum also causes the time-
average temperature and density i)rofiles' across the reactor (about which
fluctuations occur) to depart from the steady state solutions of section 3.

One can clarify this as follows:

First define a time average over a time scale larger than the
wave pericds,
T/2
(> = % f at (4.5)
-7 /2 ' . .

with T >> w;ll . The averagea fluid equations (2.16) then became

P PV
2 ¢ U > o+ 2 .¢ YV + IpTO
T 1 2.3 X Loyt 2vp o+
5 OV2 + 5 pTO + pe 2 VXT3 2P

P PI(X) ) (4.6)



Tﬁis equation, together with (2.16), can be used to generate equations
for the averages <p>, <>, <T>, etc., and fluctuations 8p, 8V, 6T, etc.

In the 'stationary turbulence" state (and for one-dimension) it
follows,

<fpdv> = 0

Sp>LKT><0> + <p>< V2> + < 8pST><0> + <8T 0O ><p>

+<8p 8O ><T> + <fp T 0> = <P > = constant.
-—g—)-{-{—:-12'-<6D(3V3>+%‘-<p><'5V3>+—g-<VpT@>
' (4.7)
+<pV€>—— <T3'§i pg >
flSS

We now see that the stationary solution to the above system differs from
the stationary solution to (2.16) because of the various pressures, fluxes,
etc., deriving fram the fluctuations.

Returning to the exact system solved by cdnputer, the fluid

variables are expanded

| p, vV, T = X {(psn, Vsn’ Tsn) sin knx + (pcn' Vcn, Tc1)1 cos _knx}
, (4.8)
where p__, V_, T _are functions of the "slow" time variable T and
oc’! "oc! Toc
all other Py Vn, Tn are functions of both slow T and also oscillate on
the fast t-scale. Also,
<p,V,T> = (0,0, T) | (4.9)

~25-



Pressure Fluctuations

Consider the fluctuating part of the pressure (including wave

pressure) ,

ép

il

P-<P>

= V2 + pT® - < pTO + pv? >

= }E 6Pn
n=1

(4.10)

The Fourier camponents GPn all fluctuate about zero, as illustrated below:

They are particularly simple to evaluate at the wall where V = 0 and

T = TW,

8P,
w

T O
wwW
n=1

i { Pns

—26—
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sin knx + pnc cos knx}

(4.11)



An alternate quantity of interest (which we will in fact plot
using the computer results), is the total pressure fluctuation about the

initial state, i.e.,

~

P = pvV? + pTO@ - (pT O+ sz)t:O_ (4.12)

In this case the various spatial Fourier carmponents of §P oscillate in
time about an average pressure that drifts away fram the initial pressure
due to the wave pressure terms, i.e., Fourier cawponents appear as

graphed below: f\ 6P
W’\j

Figure 4.2

These are the quantities that will be plotted for Various neutron gradients
and reactor parameters in Figs. 4.2 - 4.7. They are graphed for the one-
dimensional slab case. The asymptotic Fourier amplitudes are all about

18 for the cases considered with an enhancement of approximately a factor

of 2 for the cases in which the neutron density gradient was nonuniform.
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Relation between Spherical ‘and Slab Gecmetry for the
Fissioning Plasma Problem

The equations for spherical or slab plasmas can be simply re-

lated.
Slab
p pv
\ oV ; pvZ + pTO
9T 1 2 , 3 X 1 3.5 _ % m3 9T
—z-pV +-2—pTG)+pe —2-pv +2VpTO+pVe KRT >
= » (4.13)
Pfiss P9
Sphere
R%p R?pv
9 + 9_ )
3T ov oR Ve +  pTO
ar L 2 4 3 2¢ 1 3. 5 _ = oT
R[2pV +2pTO+pe] 3[29V+2VQTG) + pVe KRT BR]
0
= 0 (4.14)
-
R Pfiss Pg

where p, V, T, €, _KR, Prics

, are the dimensionless density, fluid velocity,

temperature, internal ionization energy, radiation diffusion coefficient,
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and fission power density. The function g(X) is the neutron density
in the cavity.
Now in (4.14) consider the variable change from R, V to X, W

where

X =_-3—-—R3 ;. dX = 4nrR%*dR
(4.15)
W = 41R%
In terms of X, W, equation (4.14) becares
P ow
3 | 9 w\?
- oW + =z p( ) + pTO
T B} 4 4TR2
2 2'
—%—p(w )+%pT€)+pe pW%—( W)+-§—T@+{I-§RT3(4WR2)2%§
ATR? 4TR?
0
: (4.16)
= 0
Pfiss Pg

This équation is now identical with (4.13) [where W now takes the place
of V ], except for the four underlined terms. Three of them replace
occurrences of V2 in the energy density with calculations from W; the
fourth is a temperature difference in R instead of X. Thus, to solv2 tﬁe

spherical problem with the slab solution one must make the replacements
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where underlined. Note,

v » W - W , (4.17)
47R? (4m) ¥ (3x) &3

These relationships are useful in developing hydro-codes for the slab

and sphere problems.

Comments on Radiation Flux Instabilities

It has been suggested that under same circumstances radiation
flux may drive acoustic i.nstabilities(U) in a U-plasma (see for example
"An Aooustlc Instability Driven by Absorption of Radiation in Gases" by
M. J. Monsler, MIT Tech. Note CSRT-69-4 (1969)). Our set of equations
(2.16) oontains this physical possibility since a Jlarge radiation flux ié
of course present in the steady state reactor sblui:ic:n that is perturbed
at T = 0.

It is fairly difficult to make a reliable analytic decision
canceming this possibility, and Monslér‘s analysis had several weaknesses.
However, in orxder to extract sorré limited information on tlﬁis we considered
a simple model for sound wave propagation in a medium that is treated as

hancgeneous except in terms involving the radiation flux. The linear

equations are then

1 1
Y + NO i 0 (4.18)
v oT N
1 K 1 1 _
ECRERE (No w=  Tow ) T 4.19)
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3T N v 3(T + T.)
3 1 1 5 1 9 o 1

}4
e
Q
+
w
=
| o
+
N

i (wt-ko)

It follows that mcdes e have a dispersion relation

w(3w? - 5k*v?) = - 1‘—31}- (w2 - k&2) (-iko + B - Ksz) (4.21)'
(@]

where v2 = KTO/M. Assuming radiation has a small effect one can write

w=wo,+w and treat w

1 1 s small with W = V/5/3 kv. This gives

M) = -2 (8 - KX

The range of stable wavemmbers is

2

32K 3T :
2 2 - L R (__9)
ko> kcrit KR 2 ox ’ (4.22)
o
i.e.,
" N /nn - 1) .
crit . !LT !

where Q’T is the gradient scale of T, and it has been assumed KROL ™ .
Now the approximaticns used in the analysis break down except
for the wave number range k > several kcrit’ i.e. (similar to a WKB

assumption), short wavelength acoustic waves are stable. The analytic
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question of the radiation stability of long wavelength waves with wave-
lengths ¢2T however remains open. Our camputer studies bear out the
canclusion that the radiation flux does not appear to give rise to in-

stability.
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5. STABILIZING EFFECT OF SOUND WAVE TRANSMISSION
OUT OF THE REACTING PLASMA

Instability occurs because the average effect of P over-

fiss
ocmes the damping effect of radiation diffusion for sound waves in the
wavelength range A > >5c'rlit' However, the growth rates are small (typically
lO‘ZwR) , so that it is of interest to consider the damping effects due to
escape of sound energy fram the fissioning plasma.

In realistic situations sound wave energy is partially trans-
mitted fhrough the ocontainer walls (as well as down the orifice gas colum
in the rocket case). The question arises of how to represent this trans-
mission coefficient in the equations.

Now the equatipns involve the fluxes Nu\_[u. and energy flux F.
Obviously the V\}all boundary condition NV, = 0 must not be changed since
mass is conserved in the reactor even though energy is partially transmitted.
The boundary condition representing transmission cah most easily be intro-
duced into the energy equation as a sink of sound energy density at the

wall, i.e., rewrite the energy equation as

OE | B -
T +V-F = Pfiss- S §(x xw) (S.l)
(volure energy (wall sink)
source)-
where

E = fmvv? +3 nko (L+32) +N_ € ' (‘52.)
( 2 Tuu 2 uu u : :
lF = Vv —]l‘lINVZ +—S—VNKT(1+Z)+NVS VT (5.3)
- »—1__12‘uu 210U u u—u»KR——u B

and the wall is located at xw.
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Various models for S are possible. For example, a simple non-

dispersive one is

s = OL]EW(t) - E, | | , | (5.4)

where Eo is the energy density for the stationary solution (taken as
the zero-frequency part of E )‘, and EW(t) the finite-frequency coam-
ponents of E evaluated at the wall. In this case if one considers the

simple limit P =0 andKR= 0, (5.1) becanes

fiss

OE
= - oclEW - Eol 6.(X - xW) .

??is

Since (as has already been assumed), E is nearly spatially hamogeneous,
L ' )
an integration [ "~ dx removes the §—function and gives
(o] . . v

JE

a
= 2 ®@-E) . | - (5.5)

Note the wall boundary conditions on which the code is based lets heat
out of the system but not back in. Thus we consider only perturbations
for which E > E - Equation (5.5) becomes

E-E = (B (£t =0) —'Eo)e (5.6)

i.e., the system decays to its original stationary energy state EO due
to the escape of sound wave energy in a time L/a .
For the more general problem we will use (5.4) in equation (5.1).

However it is useful to relate o to the transmission coefficient.
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Figure 5.1

Assume a fraction A of the energy of a traveling sound wave
is transmitted as shown, and that- A is independent of frequency. In
the perfactly reflecting case A=20, the standlng wave solutions for
the slab have ramplitudes that vary in time only due to Pfiss and radi-
ation diffusion. For A > 0 however, their amplitude decreases due to
escape of their decamposed traveling waves. The strength of the sink S

in (5.1) can be written

.1 _ |
S = A2 (EW EO) Vs (5.7)

where V_ is the sound speed at the wall and (§ - E) /2 1is the energy
density in the right-traveling wave. Thus the exponential decay rate in

(5.6) becomes

()
exp | -~ \—5g /¢ .



Critical Transmission of Coefficient for Stability
Transmission of sound energy out of the reactor cavity will over—

cawe its amplitude growth inside the cavity if

v A

5%_ < wg __— (5.8)

where w, is the linear growth rate. This relation leads to a critical .

I

transmission coefficient such that if A > Ac the system is stable, i.e.,

rit

2L

_ I
a> Acrit - v (stable)

S (5.9)

A< Acrit (unstable)

It should be pointed out that this relation is fairly aécurate, but -the,
exact ‘cmrpuﬁer solution with a generalized boundary condition- allowing
transmission will yield a more precise value fdr Acrit"

Now for reactors of interest, va << W kVS r so that the

appropriate growth rate calculated earlier is

KT

s (12 - 12 __ o
l(kcrit k )KRO 1 M2 L+ Zo + NoZN)
W = = (5.10)
| 2] |
3NOK 1+ Zo + T.OZT +~jﬁ

Also, several modes are unstable with the fastest growing mode correspond~

. s . . - . 2 - 2 ~ 2
ing to k a minimum, :L.e.,‘ we can write ‘kcrit k kcrit and note
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P_.
fiss,o
K(]'+Zo,+.'1,‘oz_'l‘) ( M )

2 ~
K2 e T (5.11)
R V21~ —2 (1 + 3+ N7
S V;M @) O

(Notation is as in our earlier report, (12) or the 1971 final report).

Thus
B
oy = fiss,o (5.12)
3N V2
o s
with
o 1z +T €. y
n - g]:' = l [
1+ Zo + ToZT + =

It follows that

P_.
fiss,o

. 'L
T
crit Vs '3MNV2
O s

or, since Wy = kVS = Ter/L (for the slab),

W, P..
’ I 1 fiss,o
A . = T{—— 1= nm-— —_—— . (5.13)
crit (wR ) ‘ BNNOVé -
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| Typical values are

- _ a . 10 3
Pfiss,o_ 1.3 - 10"’ ergs/am’/sec

MN_ = 6+ 103 gm/cm?®

<
i

2.7 * 10° cm/sec

L = 102 em

~ . -3

“so that Acrit ~ 4 - 1077,
For example, consider the open cycle reactor in vhich waves are
trapped in the cavity except vwhen traveling out the nozzle as shown. 2an

approximate effective transmission coefficient is

éscaping
pressure
waves

r
nozzle

2

A _ r nozzie : :
effective 2 (5.14)
4 R . .
cavity
_ Figure 5.2
i.e., we would expect the escape of sound wave energy to stabilize the
acoustic mode provided Acrit < Ae ffoctive ' €7 Tnopzle > .13 Rcavity.
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